Lecture 15:
Finite Automata
Part 2 of 3



Outline for Today

* Recap from Last Time
 Where are we, again?
* Regular Languages
« A fundamental class of languages.
- NFAs
 Automata with Magic Superpowers.
* Designing NFAs

« Harnessing an awesome power.



Recap from Last Time



Suppose you know the following:
X € X y € X*
Which of the following options is correct?

(A) x is a character and y is a character.
(B) x is a character and y is a string.
(C) x is a string and y is a character.

(D) x is a string and y is a string.

(E) None of these

Answer at https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Formal Language Theory

 An alphabet is a set, usually denoted 2,
consisting of elements called characters.

 a € 2 means “a is a single character.”

A string over 2 is a finite sequence of zero or
more characters taken from 2.

« The empty string has no characters and is
denoted ¢.

A language over 2 is a set of strings over 2.
 The language X* is the set of all strings over 2.

« W € 2* means “w is a string of characters from 2.”



The Language of an Automaton

 [f A is an automaton that processes
strings over 2, the language of A,
denoted £(A), is the set of all strings A
accepts.

* Formally:
L(A) ={we 2X*X| A accepts w }



DFAs

 ADFA i1s a

* Deterministic
« Finite
 Automaton
A DFA is defined relative to some alphabet 2.

* For each state in the DFA, there must be exactly
one transition defined for each symbol in 2.

* This is the “deterministic” part of DFA.
* There is a unique start state.

 There are zero or more accepting states.



Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

2
start @ a »(q\ a
YR

b




New Stuff!



Tabular DFAs



Tabular DFAs

1 0
start 0 " ':.
.@e .Z
1
0O 1
f*qO ql qO
These sTars dq, 4; 4,

indicate accepting

sTates, q2 CZ3 qO




Tabular DFAs

0O 1
>k
ﬁ’ dy 4, 4,
Since This is the d, 4; 4,
first vrow, if's the
sTart sfate. q2 CZ3 qO
>k
q3 q3 q3




Simulating a DFA

int kTransitionTable[kNumStates][kNumSymbols] = {
{0: 0: 1, 3, 7: 1: m}:

}s

bool kAcceptTable[kNumStates] = {
false,
true,
true,

};

bool accepts(string input) {
int state = 0;
for (char ch: input) {
state = kTransitionTable[state][ch];
}

return kAcceptTable[state];



The Regular Languages



A language L is a regular language when
there exists a DFA D such that ¥(D) = L.

If L is a language and £(D) = L, we say
that D recognizes the language L.



Complementing Regular Languages

L ={we€{a, b}*| wcontains aa as a substring }

b
start a a \
0!
b

L = { we {a, b}*| w does not contain aa as a substring }
b

start

)2

®

2

®
©

a
b



Complementing Regular Languages

L={we/{a * [/}*| wrepresents a C-style comment }




Complementing Regular Languages

L={we{a * [/}*| wdoesn't represent a C-style
comment }




The Complement of a Language

* Given a language L C X*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:
L=3*-L



The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:

Good prootwriting
exercise: prove L =1L
for any language L,




Closure Properties

« Theorem: If L is a regular language, then L is also a
regular language.

* (“The regular languages are closed under complementation.”)

* Proof idea: Show that swapping the accepting and
rejecting states of a DFA for L gives a DFA for L.

Question to ponder:
are the nonregqular
languages closed under
complementation?

All languages




Beyond DFASs



The Motivation

Question: How do we
interpret an automaton like
this one?



N FASs

* An NFA is a

e Nondeterministic
 Finite
e Automaton

 NFAs are structurally similar to a DFA,
but represents a fundamental shift in
how we'll think about com



(Non)determinism

* A model of computation is deterministic if at every point in the
computation, there is exactly one choice that can make.

« The machine accepts if that series of choices leads to an accepting
state.

A model of computation is nondeterministic if the computing
machine has a finite number of choices available to make at each
point, possibly including zero.

 The machine accepts if any series of choices leads to an
accepting state.

* (This sort of nondeterminism is technically called existential
nondeterminism, the most philosophical-sounding term we’ll introduce
all quarter.)

 This idea was introduced by Michael Rabin and Data Scott as an
internship project (!) at IBM in 1957. It won them the Turing
Award (the “Nobel Prize of Computer Science”) in 1976.



A Simple NFA

4, has Two Transitions

defined on 11



A More Complex NFA

start
() 2 )
0,1 T

It a NFA needs fo make a
Transition when no transition
exists, the automaton dies and
that particular path does not
accept,




Hello, NFA!

tart i
IORRORE O

h |1




Tragedy in Paradise

OO




ab
- @ @ @ -
Question to ponder:

Why is the answer
{weZX*| wendsin aaa }
not correct?

{we3X*| wendsin aa }

start
2
(V)

The language of an NFA is
F(N) = {we 2X*¥| N accepts w }.

What is the language of each NFA? (Assume X = {a, b}.)
Answer at hittps://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

Not at all fun or
rewarding exercise: what is
The langquage of this NFA?

(I actually dont know the
answer, I made up this NFA
just to show off e—
Transitions.)




e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

 NFAs are not required to follow e-transitions.
It's simply another option at the machine's
disposal.



N FASs

e An NFA is defined relative to some
alphabet 2.

* For each state in the NFA, there may be
any number of transitions defined for
each symbol in X, plus any number of
e-transitions.

* This is the “nondeterministic” part of NFA.
 There is a unique start state.

 There are zero or more accepting states.



DFAs

« A DFA is defined relative to some
alphabet 2.

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in X. Additionally, e-transitions
are not allowed.

* This is the “deterministic” part of DFA.
 There is a unique start state.

 There are zero or more accepting states.



Thinking about Nondeterminism



Intuition 1: Pertect Positive Guessing



Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2

SSEAL

s

il
—

OFAPPROVAL




Perfect Positive Guessing

 We can view nondeterministic machines as having
Magic Superpowers that enable them to guess
choices that lead to an accepting state.

» If there is at least one choice that leads to an accepting
state, the machine will guess it.

 If there are no choices, the machine guesses any one of the
wWrong guesses.

* There is no known way to physically model this
intuition of nondeterminism - this is quite a
departure from reality!

* (And no, this is not the same as a quantum computer.
Come talk to me after class to learn why!)



Intuition 2: Massive Parallelism



Massive Parallelism

2




Massive Parallelism

2




Massive Parallelism

2




Massive Parallelism

2




Massive Parallelism

2




Massive Parallelism

2




Massive Parallelism

We're in at least one
accepling sTate, so there's
some path that gels us To
an accepling stafe,

SSEAL

"

OFAPPROVAL




Massive Parallelism

2




Massive Parallelism

2




Massive Parallelism

2




Massive Parallelism

2




Massive Parallelism

We'vre not in any accepling
sfate, so no possible path
accepTs,




Massive Parallelism

* Key Idea: Imagine the NFA can be in many states
at once. The NFA tries all possible transitions in
parallel with one another.

 Here's a rigorous explanation about how this
works; read this on your own time.

« Start off with the start state active, plus all states that
can be reached by zero or more e-transitions.

 When you read a symbol a in a set of states S:

- Form the set S’ of states that can be reached by following a
single a transition from some state in S.

- Your new set of states is the set of states in S’, plus the states
reachable from S’ by following zero or more e-transitions.



Designing NFASs



Designing NFAS

e Embrace the nondeterminism!
* Good model: Guess-and-check:

* Is there some information that you'd really like to
have? Have the machine nondeterministically guess
that information.

 Then, have the machine deterministically check that
the choice was correct.

 The guess phase corresponds to trying lots of
different options.

 The check phase corresponds to filtering out
bad guesses or wrong options.



Guess-and-Check

L={we{0 1}*| wendsin 010 or 101 }

Nondeterministically guess when the

Cart end of the string is coming up.
Star
‘) . Deterministically check whether you

were correct,




Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Nondeterministically
guess which character
IS missing.

Deterministically check
whether That
character is indeed
Missing.




Just how powertful are NFAS?



Next Time

« The Subset Construction
* So beautiful. So elegant. So cool!
« More Closure Properties

 Transforming languages by transforming
machines.

e The Kleene Closure
« What'’s the deal with the notation X*?



